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The nested summation symbols (NSS) formalism is used as a starting point to formulate a 
completely general Rayleigh-Schr6dinger perturbation theory (RSPT) scheme. In order to 
make the theoretical framework practical from a computational point of view, the matrix form 
for the theory is given in every case. As a result, an algorithmic iterative recipe to compute 
eigenvalue and eigenvector corrections up to any order is described. Degenerate systems are 
also treated. At the same time the described procedure allows the computation of eigenvalue 
and eigenvector derivatives with respect to a set of parameters. 

1. I n t r o d u c t i o n  

We have recently proposed a quite general Rayleigh-Schr6dinger  (RS) per turba-  
tion theory  (PT) formalism [1] based on the definition of  a simple device which we 
named  nested summation symbols (NSS) [2]; also the algorithmic counterpar t ,  
generalized nested do loops (GNDL) ,  was discussed [2]. This connected our  recent  
research development  [2,3] with earlier ideas published in the early seventies by one 
of  us [4]. 

The present  paper  is another  consequence of  such a connection. The practical 
a lgori thm to solve the general RSPT problem from a matr ix  point  of  view is the 
leading feature of  the present study. The problem is presented here f rom a comple-  
tely general point  of  view and, as examples o f  application, simpler cases and 
related mathemat ica l  properties are discussed. Degenerate  spectral secular systems 
are also discussed and a solution allowing the use of  the non-degenerate  PT frame- 
work  with slight modifications is proposed. 

* Acontributionofthe "GrupdeQulmicaQu~nticadel'Institut d'Estudis Catalans". 
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2. Preliminary definitions 

2.1. NESTED S U M M A T I O N  SYMBOL 

The NSS concept corresponds to a linear operator attached to an arbitrary num- 
ber of  nested sums. In other words, an NSS represents a set of  summat ion  symbols 
where their number  can be variable. Ample information about this topic can be 
found in refs. [2,3]. Here, a simple notat ion for NSSs will be used. They will be 
written as 

~-~k(i= u,o), (1) 

where the meaning of  this convention corresponds to performing all the sums 
involved in the generation of  all the possible values of  the index vector i. The ele- 
ments of  vector i have the following limits: 

{up~ip<~vp}, V p = l , k ,  (2) 

where the ip indices are incremented one step at a time. The index k is the dimension 
of the NSS, that  is, the number  of summation symbols embedded in the operator,  
and thus the dimension of the vectors i, u and v involved. The operator ~ 0 ( i  = u, o) 
is assumed to be the same as the unit  operator. 

Parameter (k=?) 1 Dimension of the NSS 
Inteqer p,i(k),u(k),v(k) 

< Initial parameter values > 

do p=l, k 
u(p)=? 
v(p) =7 
i(p)=u(p) 

end do 

< GNDL procedure > 

p=k 
do while (p.gt.0) 

if (i(p).gt.v(p)) then 
i(p)=u(p) 
p=p-i 

else 
call Appllcation(k,i,u,v) 
p=k 

end if 
if (p.gt.0) i(p)=i(p)+l ! Step 

end do 
END 

Program 1. F O R T R A N  codification of the G N D L  implementing an NSS like ~"]k(i = u, o). 

An NSS has a computat ional  implementat ion which we called a G N D L  [2,3]. 
The G N D L  algorithm constitutes the link between the mathematical  notat ion of  
the NSS and the computer  codification of  this operator. As a short example, the 
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FORTRAN codification of the operator outlined in eq. (1) corresponds to the list- 
ing given in Program 1. There, the question marks stand for integer values which 
depend on a concrete application of the algorithm. The code generates all the i vec- 
tor forms and, for each case, calls for an Application routine which depends on the 
NSS operator parameters. 

2.2. TAYLOR SERIES EXPANSION OF AN n-VARIABLE FUNCTION 

The complete formula for the Taylor series expansion [5] of an n-variable func- 
tion f ( x )  in the neighbourhood of the point x0 possesses the following peculiar sim- 
ple structure when using the NSS formalism: 

CO 

f ( x )  = E f ( k ) ( x ) ,  (3) 
k=0 

where the following relationship between the sum of the kth order derivatives of 
the function f ( x )  evaluated at the point x0 and the kth perturbation correction has 
been taken into account: 

f(k)(x) = (kt)-lEk(i= 1,nl)H(k)(i ,x - xo)fk)(i), (4) 

where 

fk)(i)  = o(k)(i)~r(xo)], (5) 

where the I-I (k) (i, z) terms appearing in eq. (4) are defined by means of the following 
product: 

k 

1-l(k)(i,z)=I-[z,,, k ~ O  A II(°)(i,z)=l. (6) 
j= l  

Also, the 0 (k) (i)[f(x0)] expression in eq. (5) depends on the high order partial 
derivative operators, acting first over the function f ( x )  and then evaluated at the 
point x0. The differential operators can be defined in the same manner as the terms 
appearing eq. (6), but using as a second argument the nabla vector, that is, 

a(k)(i) = H(k)(i,V), k ~ 0  A 0(°)(i) = I .  (7) 

Expression (3) is very useful in the sense that one can control the series trunca- 
tion. This is so because the parameter k gives the order of the derivatives appearing 
in the expansion. 

Here, this formulation will be used to deal with a generalized RSPT formalism. 
The study presented here includes the framework of multiple perturbations as in 
the earlier double perturbations treatment of Dalgarno [6a] and Fu-Tai Tuan [6b,c] 
or those discussed recently by Kutzelnigg [6d]. 
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3. Generalized matrix perturbation theory (MPT) 

3.1. PERTURBATION HAMILTONIAN AND TAYLOR SERIES 

The goal is to solve the secular equation in the matrix form, 

v ( x )  = (8) 
where all the involved matrices depend on n variables, collected in the vector 
x = (xl, x2, • • . ,  x,), and where H(x) is Hermitian; so the eigenvector matrix V(x), 
being unitary, satisfies 

V+(x)V(x) = V(x)V+(x) = I (9) 

and E(x) is a diagonal real matrix. 
Using the Taylor series expansion (3) for the Hamiltonian and expanding it 

around the point x0 = 0, it can be written as 
oO 

H(x) = Z H(i)(x)' (10) 
k=0 

where the following term has also been defined: 

H(k)(x) ----(k!)-l~k(i= 1,nl)II(k)(i,x)Hk)(i) , (11) 

with 

Hk)(i) = o(k)(i)[H(O)] , (12) 

and I'I (k) (i, x), 0 (k) (i) have the same meanings as in eqs. (6) and (7), respectively. 
Expressions similar to eq. (10) can be given for the matrices V(x) and E(x). 
In this manner, once the perturbation corrections are known, it is easily possible 

to compute the derivatives of the matrices V(x) and E(x). Therefore, the RSPT 
can be directly related to the computation of derivatives [7]. This feature can be 
applied to several quantum chemical topics related to Taylor expansions as the 
ones outlined in ref. [8]. 

3.2. PT IN A MATRIX FORM 

Supposing the matrix derivatives {/'/(k) (x) } and the V (°) = V(0) and 
E (°) = E(0) matrices are known, as well as the following equation satisfied: 

H (°) V (°) = V(°)E (°) , (13) 

where 

V (°)+ V (°) = V (°) V (°)+ = I ,  (14) 

then, combining eqs. (8) and (10), with the Taylor expansions of V(x) and E(x) 
the set ofnth order equations is obtained: 
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n n 

E H(P)(x) V(n-p)(x) = E V(n-P)(x)E(P)(x)' n>~l. (15) 
p=O p=O 

A linear transformation, Z (') (x), from the unperturbed vector matrix to the per- 
turbed ones can be envisaged: 

v(n)(x) = V(°)z(n)(x), (16) 

or using eq. (14), 

V(°) + V(")(x) = Z(n)(x) , (17) 

where the Taylor expansion of Z(x) has been defined as 
OO 

Z(x )  = y]~ z(k)(x) ,  (18) 
k=O 

and the following expression holds: 

V(x)  = V(°)Z(x) .  (19) 

From (17) and (14) it follows that Z (°) (x) = Z(0) = I. Without loss of general- 
ity, a correction vector of any order can be expanded as a linear combination of the 
unperturbed ones except those related to the same eigenvector column. Then, the 
matrices Z (') (x) should bear a null diagonal for n >~ 1. 

In this manner, the role of Z(')(x)  matrices is similar to the Hirschfelder and 
Silverstone definition ofresolvent operators [9]. 

Equation (15) can be multiplied on the left by V (°)+ and the following expression 
is obtained: 

Q(n)(x) = [E(°),Z(n)(x)] 
n 

-_ E(Z("-P)(x)EtV)(x)  - J(r)(x)Z('-P)(x)), n>~l, (20) 
p=l 

where Q(')(x) is a zero-diagonal matrix and the {J(P)(x)} matrix collection is 
defined as 

J(P) (x) -- V(°)+/-/(p) (x) V (°) , (21) 

the equivalent matrix set to the pth order perturbation Hamiltonians throughout 
the matrix V (°) . 

Because of the nature of Z (') (x) matrices, it follows from eq. (20) that 

E("/(x) = diag J(P) (x)Z (~-J') (x 
L,p=1 

= diag V (°)+ ~H0 ' I (x )V(" -P / (x )  • (22) 
p=l 
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Equation (20) allows the computation of the Q(')(x) matrix involving Z (p) (x) 
matrices of orders from 0 up to n - 1. In this manner, once Q(') (x) is known, it is 
possible to compute the elements of the Z (n) (x) matrix using 

(n) z~n.)(x)=q(ij')(x)/(el°i)-e}°)), ViT~j A Zig (x)=O, (23) 

where el °) are the diagonal elements of the E (°) matrix assuming a non-degenerate 
spectral form for H (°). 

Therefore, it is possible to compute all the energy corrections, iterating over 
eqs. (22), (20) and (23) in this order. If needed, eq. (16) can provide the vector 
corrections. 

From eq. (20), it can be deduced that Q0)(x) is a symmetric matrix, then, from 
eq. (23), Z (1) (x) appears as a skew-symmetric matrix. 

3.3. A P P LI C A T I O N TO D E G E N E R A T E  SYSTEMS 

Degenerate systems can be treated using a non-degenerate framework such as 
the one previously described. The present recipe can be found in ref. [10], trans- 
forming the perturbed system by simultaneously adding and subtracting a matrix 
M(x). The perturbed problem becomes 

H(x)=(H(°)(x)+M(x))+(~-~H(k)(x)-M(x)) ' k = l  (24) 

and this is equivalent to redefining the unperturbed system as 

H(°)(x) ' -  H(°)(x) + M ( x ) ,  (25) 

compensating this sum in the perturbation. It is possible to chose M(x) in a conve- 
nient form which allows the erasure of degeneracies. This can be achieved by defin- 
ing the matrix M(x) as the spectral decomposition: 

i ( x )  = ~ cpP;°)(x), (26) 
P 

where every c? is a small arbitrary number and p(_0)(x) is a projector associated p 
to the pth eigenvector of the unperturbed system H (°) (x). It is easy to show that 
this choice for the M(x) matrix converts the new unperturbed system (25) in such a 
way that the eigenvectors are kept invariant with respect to the original system, 
H(°)(x), and the set of eigenvalues {ep (°)} transforms to the set {e~ ) + ep}. The 
eigenvalue shifting allows the overriding of degeneracies, making possible the use 
of the non-degenerate PT formalism to the new defined system. 

Some numerical tests have been done in our laboratory showing this procedure 
is valid. Nevertheless, the set of {ep} shift values must be chosen carefully and some 
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particular cases may present numerical instabilities making the procedure 
difficult, but this is perhaps preferable to the usual complex formalism involving 
degenerate PT. This can be made even clearer by consulting Hirschfelder and 
Certain [11]. 

4. General ized t'mite order matrix per turbat ion theory (FOMPT)  

It is possible to truncate the series (10) up to the mth term. So, it is assumed 
that 

H(k)(x) = 0, Vk>m,  (27) 

and, the expression for the Taylor expansion of the Hamiltonian matrix reads 
m 

H(x) = H<k/(x/;  (28/ 
k=0 

in this manner, the J(P) (x) matrices, as defined in eq. (21), vanish forp > m. 
In this case, the counterpart ofeqs. (20) and (22) is 

n min(m,n) 
Q(")(x) = E Z("-P)(x)E(P)(x) - Y~  J(P)(x)Z(n-P)(X)' n~>l, (29) 

p=l p=l 

and 

(min(m,n) } 
E(n)(x) = diag~ E J(P)(x)Z(n-p)(x) 

I. p=l 

= diag V (°~+ ~_, H (p~(x) V("-PI(x) , 
p----1 

respectively. 

(30) 

5. Wigner  theorem for the generalized first order MPT 

A particular case of the FOMPT is reached when one truncates the sum (28) for 
m = 1. Then, one is dealing with the first order MPT. In this case, starting from 
eq. (30), using eq. (27), eq. (15) for n = 1 and transposing the involved matrices, the 
following result is obtained: 

E (") (x) = - diag{ V (1) ( x ) + H  (0) V ("- 1)(x) } 

} + diag V(n-x) (x)+ V(I-p)(x)E(P)(x) . (31) 
kp=0 
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This process can be repeated over the first term of  eq. (31) using eq. (15) for n sub- 
stituted by the values: { n - k , k +  1} (k = 1,rn). The following expression is 
obtained: 

E (n) (x) = - diag{ V (m) (x) + n  (0) V (m) (x) } 

I } + diag ~ ~ v(n-k)(x)+V(k-P)(x)E(P)(x) 
I,k=l p=0 
(m--1 n-k } 

- d i a g ~ Z  ~ V("-k-P)(x) + v(k)(x)E(P)(x) , (32) 
I .k=l  p=0 

where n is considered even and m = n/2. The invariance upon commuta t ion  of  the 
diagonal elements of  a product  between a diagonal matrix and an arbitrary one has 
been also used. 

Induction can prove that terms involving vector corrections of  order greater 
than m vanish in eq. (32). In this manner,  the expression for the nth order energy 
correction involves corrections to the vectors up to the order n/2 only: 

E (') (x) = - diag{ V (m)+ (x )H (°) V (m) (x) } 

+ diag V (m)+ (x) V (m-p) (x)E 0') (x) 
kp=0 
(m-I n-k } 

- d i a g ~  Z V("-k-P)+(x)V(k)(x)E(P)(x) " (33) 
1, k=l p=m-k 

A similar and straightforward result can be obtained when n is odd. In this 
case, eigenvector corrections up to order (n - 1)/2 are needed to evaluate nth eigen- 
value corrections. 

6. M o n o d i m e n s i o n a l  c a s e  

A particular case of  the general formalism outlined in section 3 is obtained 
when the monodimensional  framework is envisaged. Then, the x vector becomes a 
scalar: x. One can proceed in the same manner  as in the general theory in order to 
derive the PT equations. The main differences are such that eq. (11) becomes 

H (k) (x) = (k!) -1 x 1': ~ H(x)  x=0' (34) 

and the term x k is a common factor on both sides ofeq.  (15); so it is no longer neces- 
sary. The nth order equation now reads 

P1 n 

HC°)v(n-P) = Z v(n-p)E(P)' n~>l,  (35) 
p=0 p=0 
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where in this case, the constant matrix has been defined: 

d k 
H (k) = x-kH(k)(x) = (k!)-l--d- ~ H(x)  

x.~O ~ 

and similar expressions hold for V (k), E (k) and Z (k) matrices. 
The expression for the nth order energy correction is 

E (') = diag J(P)Z (È-p) = diag V (°)+ H (p) V (~-p) , 

(36) 

(37) 

which is the counterpart of eq. (22). The companions of eqs. (20) and (23) are 
trivially defined. 

The usual RSPT [12] scheme in the matrix form is nothing else but a particular 
case of the formalism outlined above. Series (28) is truncated using rn = 1 and, 
thus, eq. (28) is transformed into the monodimensional case. The expression for the 
Taylor expansion of the H(x)  matrix takes the following well-known form: 

U ( x )  = n (0) -}- x H  (1) , (38) 

and the counterpart ofeqs. (29) and (30) becomes 
PI 

Q(n) = ~ z(n-p)E(p) _ j(1)l(n-1) n ~> 1, (39) 
p=l  

and 

E (n) = diag{J(1)Z (n-l)} = diag{ V(°)+H (1) V (n-l)}, (40) 

respectively. 

7. Conclusions 

A general RSPT framework in the matrix form allowing a perturbation matrix 
series, useful in any eigenvalue occurrence, has been described. The connection 
with Taylor series expansions has been made at all levels. The result is a simple 
reliable set of algorithms involving matrix operations and allowing automatized 
calculation of eigenvalues and eigenvector corrections. 
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